

## Question Paper Code: 30893

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Seventh Semester

Computer Science and Engineering

CS 2403 — DIGITAL SIGNAL PROCESSING

(Common to Fifth Semester Information Technology)

(Regulation 2008)

(Also common to PTCS 2403 — Digital Signal Processing for B.E. (Part-Time) Sixth Semester — CSE — Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. State low pass sampling theorem.
- 2. What is meant by energy and power signals?
- 3. What is meant by radix 2 FFT?
- 4. Give transform pair equation of DFT.
- 5. What are the limitations of Impulse invariant technique of designing filters?
- 6. Given the low pass transfer function  $H_a(s) = \frac{1}{s+1}$ . Find the high pass transfer function having a cutoff frequency to rad/sec.
- 7. What is linear phase response of a filter?
- 8. State any two important properties of FIR filter.
- 9. List out the application of Adaptive filtering.
- 10. What do you mean by speech compression?

## PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Find the convolution of given signals

$$x(n) = 3^{n} u(-n)$$
 and  $h(n) = [1/3]^{n} u(n-2)$ . (8)

(ii) Applying concentric circle method, compute circular convolution of the sequences  $h(n) = \{1, 2, 3, 4\}$  and  $x(n) = \{1, 2, 3\}$ . (8)

Or

- (b) Explain the process of analog to digital conversion of signal in terms of sampling, quantization and coding.
- 12. (a) (i) Discuss the properties of DFT. (8)
  - (ii) Discuss the use of FFT algorithm in linear filtering and correlation. (8)

Or

- (b) Find DFT for {1, 1, 2, 0, 1, 2, 0, 1} using FFT DIT butterfly algorithm and plot the spectrum. (16)
- 13. (a) (i) Obtain the direct form I, direct form II, cascade and parallel form realization for the system

$$y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2).$$
 (8)

(ii) For the analog transfer function  $H(s) = \frac{2}{(s+1)(s+2)}$ . Determine H(z) using impulse invariance method. Assume T = 1 sec. (8)

Or

(b) A low pass filter meeting the following specifications is required:

Passband – 0-500 Hz

Stopband – 2-4 kHz

Passband ripple – 3 dB

Stopband attenuation - 20 dB

Sampling frequency – 8 kHz

- (i) Pass and stopband edge frequencies for a suitable analog prototype low pass filter.
- (ii) Order N of the prototype low pass filter.
- (iii) Coefficients and hence the transfer function of the discrete time filter using the bilinear z-transform.

Assume Butterworth characteristics of the filter. (16)

14. (a) Design a FIR bandstop filter to reject frequencies in the range 1.2 to 1.8 rad/sec using Hamming window, with length N = 6. Also, realize the linear phase structure of the bandstop FIR filter. (16)

Or

- (b) Explain the characteristics of a limit cycle oscillation with respect to the system described by the equation y(n) = 0.85y(n-2) + 0.72y(n-1) + x(n).

  Determine the dead band of the filter  $x(n) = \left(\frac{3}{4}\right)\delta(n)$ . (16)
- 15. (a) (i) Explain aliasing effect in down sampling. (8)
  - (ii) Explain subband coding technique used in speech coding. (8)

Or

- (b) (i) Explain digital processing of audio signals. (8)
  - (ii) Explain digital signal processing in image enhancement. (8)

the main participation of the first participation of the first participation and the second of the s

the best of the second of

والمرابع والمرابع

the second of the fall of the